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The diminution of light caused by a developed photo-
graphic layer is designated as its optical density D. If D
is plotted versus the logarithm of the product of light
intensity I and exposure time t, a characteristic curve is
received. In Figure 1, the typical shape of a characteris-
tic curve is represented. From this graphic, the photo-
graphically relevant properties of photomaterials can be
derived. In such a way, the minimum density Dmin, the
sensitivity or speed E and the gradient γ = tan α (the
slope of curve in the usable exposure range) can be rep-
resented. A usable blackening of the photographic ma-
terial begins above the minimum density Dmin. The un-
wanted blackening of unexposed grains in the photo-
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graphic emulsion occurring below this threshold value
is designated as ‘fogging’ of silver halide photographic
layers. For reduction of the minimum density values,
benzimidazoles and phenylmercaptotetrazoles are of-
ten added to the photographic emulsion as so-called anti-
fogging agents or antifoggants. In addition, stabilizers
are applied to maintain the essential sensitometric char-
acteristics, in particular, the speed E and the minimum
density Dmin, of photographic materials during storage.
The best-known emulsion stabilizer, the 7-hydroxy-5-
methyl-1,2,4-triazolo[1,5-a]pyrimidine, was already dis-
covered by Birr at AGFA Wolfen in 1935 [1]. Connec-
tions between the anti-fogging effect and the low solu-
bility of the silver salts and the adsorption properties of
photographic additives were discussed by James in 1977
[2]. In the last decade some reviews were presented con-
cerning the characteristics of stabilizers and anti-fog-
ging agents and the existing ideas about the mechanism
[3]. However, in spite of numerous efforts, up to now
there is no uniform theory generally explaining the ef-
fects of the anti-fogging agents. Therefore, all previous
successes in the field of stabilization and the decrease
of fog were essentially achieved empirically. Thus, no
quantitative relationships could be established between
the structures of triazolo[1,5-a]pyrimidines and their
sensitometric properties, up to now.

Kleinpeter and co-workers have studied in detail in
the past few years the 13C NMR spectra, 15N NMR spec-
tra and quantum-chemical calculations of a large varie-
ty of substituted 1,2,4-triazolo[1,5-a]pyrimidines [4].

Abstract. Quantitative structure–property relationships were
proposed by using artificial neural networks and informa-
tion received from 13C NMR spectra. The suitability of 1,2,4-
triazolo[1,5-a]pyrimidines as stabilizers in photographic sil-
ver halide materials was determined from their chemical
structures. For the numeric coding of the chemical structures
of differently substituted 1,2,4-triazolo[1,5-a]pyrimidines 1–
44 only information available from their 13C NMR spectra
was used. Even an assignment of the 13C NMR chemical

shift values to the carbons was not necessary. The best re-
sults were achieved by combination of the 13C NMR chemi-
cal shifts of carbons of the basic heterocycle and the relative
fog Drel using a feed-forward two-layer neural network. For
some compounds with a good stabilizing effect the calculat-
ed results strongly differ from experimental values giving
indication of a mechanism which is not covered by the
13C NMR chemical shifts.

Fig. 1 Typical characteristic curve in which the optical den-
sity D of the individual steps of a step–wedge exposure is
represented as a function of the exposure H = I . t. The min-
imum density Dmin, the speed E0.1 at 0.1 density units over
Dmin, the slope α as well as the maximum density Dmax are
depicted.
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Application of Neural Network

This paper presents results of the use of a backpropaga-
tion neural network (NN) for quantitative structure–
property relationships of 1,2,4-triazolo[1,5-a]pyrimidi-
nes. During the past several years there has been a
growth of interest in use of NNs in the field of chemis-
try [5]. An overview of chemistry related applications
was given by Burns and Whitesides [6]. Applications
of NNs exist in almost all fields of analytical chemistry.
They have also been applied to the analysis of spectro-
scopic data, as well as for mass [7], near-infrared [8],
fluorescence [9] and NMR [10] spectra, to list only a
few current examples.

An artificial neural network is a very simplified model
of natural neural systems. Analogous to the neural cells
of a living organism the artificial neurons are computer
simulated. One of the unique properties of neural net-
works is their ability to learn by observation. An NN
can by adapting itself, learn to recognize features in a
data set by repetitiously examining examples of the same
or similar data. So, an NN based analysis can be real-
ized without the developer having any a priori assump-
tive knowledge of the problem’s parameters [9]. They
can also serve as a powerful tool to assist in knowledge
acquisition, helping the chemist to gain insight into poor-
ly understood systems. For this reason NNs are also used
for finding relationships between structural information
and properties of single compounds or complex sys-
tems when the mathematical description of the struc-
ture–property relationships is not known. However, only
a few applications of the use of NNs for the prediction
of quantitative structure–property relationships (QSPR)
were described up to now. A typical example of QSPR
is the estimation of boiling points from structural pa-
rameters. Balaban et al. used multiple linear regression
(MLR) to set up a correlation between boiling points
and structural parameters of 185 ethers and other com-
pounds [11]. Lohninger observed a significant decrease
of the prediction error by using a radial basis function
neural network to approximate the correlation of the
same parameters and properties [12]. Cherqaoui and
Villemin also constructed models of relationships be-
tween the structures and boiling points of 150 alkanes
by means of multilayer neural networks [13]. Devillers
and co-workers used a backpropagation neural network
for estimating the n-octanol/water partition coefficients
of over 7 700 organic molecules from their structure
described by means of a modified autocorrelation meth-
od [14]. An overview of the current usage of the NN in
QSPR and quantitative structure-activity relationships
(QSAR) studies is given also by Devillers [15]. How-
ever, in all cases the molecular structures were repre-
sented by numerical codes, containing information about
topology and connectivities. Another way is the descrip-
tion of structural information by using the numerical

values of the NMR chemical shifts. In this way, the re-
lationships between the 13C NMR chemical shift infor-
mation and the boiling points of 150 n- and iso-alkanes
were simulated with an NN [16].

Experimental

Fourtyfour differently substituted 1,2,4-triazolo[1,5-a]pyri-
midines were tested as stabilizers [17]. Each compound was
evenly distributed in a high-speed AgBr emulsion in a con-
centration of 3–9 mmol per mole silver halide except for the
-SH or -SCN containing compounds (0.3–0.9 mmole) and
for compound 43 (40 mmole). Then the minimum density
Dmin_k and the sensitivity E0.1_k were determined as the most
important sensitometric parameters. All specifications were
compared to the photographic layer without any addition of
stabilizer, the so-called ’control‘ Dmin_0  to compensate for
variations due to different layer thicknesses and emulsion
processing. The relative fog Drel and the sensitivity ∆ E0.1
were calculated from these values by the simple equations:

Drel = Dmin  /Dmin and ∆E0.1  – E0.1

The determinations of sensitometric parameters were ex-
amined both with an emulsion prepared freshly (marked here
as ’fr‘) and after an accelerated artificial aging by storage for
ten days at a temperature of 50 °C (marked here as ’ag‘).

All 13C NMR chemical shift values used here were taken
from a study by Kleinpeter, Thomas and Fischer [4a]. Com-
putations were carried out with personal computers. Multiple
linear regressions and cluster analysis were done using the
SYSTAT statistic software (STATCON). An internally devel-
oped computer program was used for the back-propagation
neural network calculations [18]. Here, the number of the in-
put units of the hidden layers and of the hidden neurons were
optimized by several tests. Always one neuron was used as
output neuron. The input data were separated into sets for
training, monitoring, and testing by random selections. All
data were normalized before their input. A sigmoidal func-
tion was always used as transfer function. Training and mon-
itoring data sets were run simultaneously. The iterative proc-
ess was stopped if the deviation for the monitoring data in-
cresed.

Results and Discussion

The chemical structures of 44 differently substituted 1,2,4-
triazolo[1,5-a]pyrimidines and their experimentally deter-
mined relative fog values are summarized in Table 1. We used
the numerical values of the 13C NMR chemical shifts to de-
scribe the structures of these 1,2,4-triazolo[1,5-a]pyrimidines
quantitatively. In such a way, the constitutions, the equilibri-
um between possible tautomers, the effects induced by the
neighbouring groups and the spatial arrangements of the car-
bon atoms could be described simultaneously by few numer-
ic values. So, the chemical structure of every compound were
encoded by a set of the 13C NMR chemical shifts of the five
carbon atoms C-2, C-5, C-6, C-7 and C-9 of the basic hetero-
cycle. However, the differences between the 13C NMR chem-
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Table 1 Sensitometric properties of 1,2,4-Triazolo[1,5-a]pyrimidines

Nr. R2 R5 R6 R7 fr. a) ag. b) calc. c) s.d. d)

1 H CH3 H OH 0.43 0.31 0.65 0.07
2 CH2OH CH3 H OH 0.45 0.29 0.55 0.05
3 (CH2)6CH3 CH3 H OH 0.55 0.52 0.45 0.08
4 CH2OCH2COOH CH3 H OH 1.00 0.65 0.55 0.04
5 CH2SH CH3 H OH 0.42 0.62 0.58 0.03

6 CH3 H OH 0.78 0.51 0.55 0.04

7 COOH CH3 H OH 0.91 0.78 0.64 0.06
8 COOCH2CH3 CH3 H OH 1.00 0.70 0.58 0.07
9 COS(CH2)3CH3 CH3 H OH 0.67 0.62 0.60 0.09
10 COS-nC8H17 CH3 H OH 0.67 0.40 0.36 0.04
11 COSCH2COOH CH3 H OH 0.15 0.13 0.57 0.01
12 COSPh CH3 H OH 0.37 0.21 0.52 0.09
13 OH CH3 H OH 0.85 0.82 0.74 0.06
14 SH CH3 H OH 0.68 0.61 0.71 0.11
15 SCH3 CH3 H OH 0.71 0.46 0.53 0.05
16 SCH2COOH CH3 H OH 0.57 0.56 0.51 0.01

17 CH3 H OH 0.59 0.50 0.48 0.02

18 SCH2-Ph CH3 H OH 0.41 0.33 0.39 0.04
19 -S–S- (disulfide) CH3 H OH 1.00 0.67 0.71 0.12
20 SO2CH3 CH3 H OH 0.93 0.82 0.71 0.12
21 NHNO2 CH3 H OH 0.48 0.37 0.71 0.11
22 H CH3 (CH2)2OH OH 0.42 0.34 0.74 0.04
23 H CH3 (CH2)2Cl OH 0.80 0.71 0.68 0.06
24 H CH3 CH2-Ph OH 0.97 0.88 0.86 0.03

25 H CH3 OH 1.00 0.88 0.50 0.11

26 H CH3 Cl OH 1.00 0.58 0.67 0.03
27 H CH3 Br OH 0.49 0.32 0.57 0.10
28 H CH3 I OH 0.50 0.47 0.46 0.02
29 H CH3 NO2 OH 1.00 1.00 1.05 0.06
30 SCH3 CH3 Br OH 0.28 0.42 0.38 0.03
31 SCH3 CH3 SCN OH 0.89 0.64 0.59 0.17
32 H (CH2)2CH3 H OH 0.89 0.50 0.54 0.05
33 H (CH2)4CH3 H OH 0.83 0.44 0.55 0.06
34 H CH2-Ph H OH 0.89 0.48 0.47 0.03
35 H CH2SH H OH 0.42 0.94 0.71 0.04
36 H CH2S(CH2)3CH3 H OH 0.48 0.33 0.46 0.04
37 H SCH3 H OH 1.00 0.60 0.59 0.04
38 H SO2CH3 H OH 1.00 0.65 0.68 0.04
39 COOH (CH2)4CH3 H OH 1.00 0.83 0.69 0.10
40 COOCH2CH3 (CH2)4CH3 H OH 0.74 0.44 0.54 0.05
41 SCH3 CH2Ph H OH 0.64 0.37 0.51 0.12
42 H H COOCH2CH3 OH 0.89 1.26 – e) – e)
43 H CH3 H CH3 0.80 0.45 0.51 0.12
44 H CH3 H SH 0.53 0.33 0.36 0.05

         Rtrain 0.25 f) 0.58 f) 0.52 g)
         Rtest 0.24 f) 0.56 f) 0.79 g)

a) The ’fresh‘ values were measured immediately after coating the photographic layer.b) The ’aged‘ values were measured after an acceler-
ated aging (storage for ten days at 50 °C).c) The averaged consistent values of Dmin_k /Dmin_0 (after aging) of five calculations with different
data sets and a neural network.  d) Standard deviations computed over five calculations. e) Compounds with a relative fog of >1 density
units were not considered here. f) Regression coefficients R for the values computed for 33 training compounds and for 10 randomly
selected validating compounds (test) with the multiple linear regression. g) Averaged regression coefficients from five different calculations
with neural networks. The results of the randomly selected validating and test data sets were combined here (see also Figure 3).

Dmin_k/Dmin_0

–
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ical shifts of the nitrogen–neighbouring carbon atoms C-2,
C-5, C-7 and C-9 were small within the respective compounds.
Only the highfield shifted signals of the C-6 carbons distin-
guishes clearly from the other heterocyclic–carbon atoms.
Furthermore, the assignment of any NMR signals to the indi-
vidual carbon atoms could not be carried out with certainty.
So in compound 43 a neighbouring difference of 17.5 ppm
was measured between the two signals uncertainly assigned
for the C-5 or C-7 position [4a]. Therefore, the chemical shifts
of the five carbons in each triazolopyrimidine were assigned
to five input units of the NN in the same increasing order of
values which was observed experimentally. This procedure
allowed the exclusion of interferences with subjective inter-
pretation of the experimental data. Unfortunately, the varia-
tions of the individual 13C chemical shifts of the carbons be-
tween the different compounds were also negligible [4a]. Here,
standard deviations were found of only 1.5 ppm for the C-9
carbons. They increase to 7.3 ppm for the C-6 carbons. For
this reason, the number of the carbons in all substituents was
applied auxiliary as structure information data.

As expected, with conventional linear methods of data anal-
ysis no significant relations were found between these
13C NMR data and the sensitometric properties of the 1,2,4-
triazolo[1,5-a]pyrimidines. That is exemplified by the small
regression coefficients which resulted from multiple linear
regression (R values in Table 1). By use of a hierarchical clus-
ter analysis considering all sensitometric and spectroscopic
information which were available the best similarity was ob-
served between the 13C NMR chemical shift values and the
relative fog in the photographic layer after an accelerated aging
(Dmin_k /Dmin_0 ’ag‘). However, the results of the sensitivity
measurements ∆E0.1 both in the fresh material and in the aged
one showed no similarity with the NMR data. Therefore, the
following computations were limited to the values of the rel-
ative fog in the aged material.

For the determination of the completely unknown connec-
tions between this sensitometric property and the 13C NMR
chemical shifts a multi-layered backpropagation neural net-
work was used. Always six input units were required where-
as the output layer was formed by a single individual neuron
providing the calculated value of the relative fog Drel. This is
schematically shown in Figure 2. Three data sets were formed
from the available experimental values, a larger one for train-
ing the neural network and two smaller ones for validating
and testing the NN. During training, the inputs are first mul-
tiplied by random weights, summed and used as input for the
selected transfer function in each hidden neuron. The outputs
of the hidden neurons are also multiplied by random weights
and summed to provide the output neuron. Finally, the output
neurons are compared to the known values. The resulting dif-
ferences are used to modify the connection weights by a back-
ward pass during which the weight changes are propagated
back to the network. So the network produces more and more
correct outputs. These forward and backward processes are
continued until the outputs converge on the desired values.

If a network is allowed to train too long, it will lose its
ability to generalize. The NN will start to fit the noise in the
training set, and the result is a so-called ’overtrained‘ net. By
using the trained net to predict the output of a second moni-
toring data set simultaneously, it is possible to determine the
optimum number of iterations for the training set [8]. During

the learning phase the mean deviation between the computed
and the correct output values of the training set decreased
constantly. The iterative process was stopped when the devi-
ation for the monitoring set increases. Several network archi-
tectures with a different number of layers and hidden neurons
were tested. The models were trained with a set of 33 ran-
domly selected samples, validated with five selected sam-
ples, and finally tested with five randomly selected samples
which the network never ‘saw’ before.

Several hundred runs were carried out with different net-
work architectures. The best results could be achieved by us-
ing a one-hidden-layered neural network whose hidden layer
consisted of three neurons. In Figure 3a the results of a run
with this network construction are shown. The comparison
of calculated and experimentally determined relative fog val-
ues are depicted for the training, monitoring and test data sets.
Here, the training process was stopped after about 200.000
iterations. The quality of the computed results were reflected
by the regression coefficients R for the comparison of calcu-
lated with experimental values. However, with randomly se-
lected data sets, slightly different results were always obtained
for the individual compounds during different runs. So, in
Figure 3b as also in Table 1 the calculated relative fog values
averaged over five different runs are shown. In addition to
the comparison between averaged computed and experimen-

Fig. 2 Schematic presentation of the method used here for
the computation of quantitative structure–property-relation-
ships. Here, the chemical structure of compound 15 is nu-
meric coded by 13C NMR spectral information. The chemical
shift values of the five carbons in the basic heterocycle (dark-
gray area) are used as input values in the order of increasing
chemical shifts. Also the number of all carbons in the substi-
tuents (light-gray area) is used as input for the neural net-
work. Circles describe the artificial neurons. The trained net-
work is able to compute the sensitometric value which leaves
the single output neuron.
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tal values, also the standard deviations from the five calcula-
tions are represented in Table 1. It is clearly shown, that these
values are independent of the calculated relative fog values.
The stabilizing action and the underlying physicochemical
effects of triazolopyrimidines are influenced by their elec-
tronic structures which also express themselves in the NMR
spectra. Therefore different substituents influence both pho-
tographic activities and NMR chemical shift values. This be-
comes clear with the correlation achieved between the com-
puted and the experimental values, represented in Figure 3a.
However, it is shown also that for the compounds with a good
stabilizing effect the calculated results strongly differ from
experimental values. That becomes clear on the left side of
the dashed line in the Figure 3b. On the other hand, the stand-
ard deviations are nearly of the same size across the entire
range of values (Table 1). This is an indication of a mecha-
nism which is not covered by the 13C NMR chemical shifts
used here for the numeric coding of the chemical structures.
This becomes especially clear on closer inspection of the re-
sults obtained for the 7-hydroxy-5-methyl-1,2,4-triazolo[1,5-
a]pyrimidin 1. For this compound, already used for a long
time as emulsion stabilizer and antifoggant in film produc-
tion, an averaged relative fog value of 0.65 density units was
computed which is very clearly over the experimental value
of 0.31 density units. Chambers proposed that the photograph-
ic properties of hydroxytriazolopyrimidines are those of the
corresponding silver-complexed, mesomeric anions [19].
However, the outstanding photographic suitability of triazo-
lopyrimidines must be co-determined by the properties of the
bicyclic parent system. Therefore even the non-acidic deriv-
ative 43, exhibiting in higher concentrations a small but dis-
tinct stabilizing effect [20, 21], fits in with the structure–prop-
erty relationship.

To the best of our  knowledge it was successful for the first
time to compute quantitative relationships between physico-
chemical properties and 13C NMR chemical shifts for a group
of compounds with the aid of a neural network. It could be

shown that a neural network is able to register the complex
connections between structure-relevant NMR data and mate-
rial qualities. Unfortunately, the networks offer only small
possibilities for interpretation of the discovered structure–
property relationships. However, the similarity between com-
puted and experimental relative fog values shows that 13C
NMR chemical shifts are basically suitable for a simple nu-
meric coding of chemical structures and also quantitative
structure descriptions.

One of the authors (G. F.) thanks Chem. Ing. Sigrid Wischek
for performing the photographic tests.
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