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Abstract. Quantitative structure—property relationships wereshift values to the carbons was not necessary. The best re-
proposed by using artificial neural networks and informa-sults were achieved by combination of & NMR chemi-

tion received fromd3C NMR spectra. The suitability of 1,2,4- cal shifts of carbons of the basic heterocycle and the relative
triazolo[1,5a]pyrimidines as stabilizers in photographic sil- fog D, using a feed-forward two-layer neural network. For
ver halide materials was determined from their chemicabome compounds with a good stabilizing effect the calculat-
structures. For the numeric coding of the chemical structuresd results strongly differ from experimental values giving
of differently substituted 1,2,4-triazolo[1d&pyrimidinesl— indication of a mechanism which is not covered by the
44 only information available from the#tC NMR spectra  13C NMR chemical shifts.

was used. Even an assignment of ¥#@ NMR chemical

The diminution of light caused by a developed photo-graphic emulsion occurring below this threshold value
graphic layer is designated as its optical derizity D is designated as ‘fogging’ of silver halide photographic
is plottedversusthe logarithm of the product of light layers. For reduction of the minimum density values,
intensityl and exposure timtega characteristic curve is benzimidazoles and phenylmercaptotetrazoles are of-
received. In Figure 1, the typical shape of a characterigen added to the photographic emulsion as so-called anti-
tic curve is represented. From this graphic, the photofogging agents or antifoggants. In addition, stabilizers
graphically relevant properties of photomaterials can b@re applied to maintain the essential sensitometric char-
derived. In such a way, the minimum dengty,,, the  acteristics, in particular, the speednd the minimum
sensitivity or speedt and the gradieny= tan a (the  densityD,,;,, of photographic materials during storage.
slope of curve in the usable exposure range) can be rephe best-known emulsion stabilizer, the 7-hydroxy-5-
resented. A usable blackening of the photographic mamethyl-1,2,4-triazolo[1,®]pyrimidine, was already dis-
terial begins above the minimum dendity;,. The un-  covered by Birr at AGFA Wolfen in 1935 [1]. Connec-
wanted blackening of unexposed grains in the phototions between the anti-fogging effect and the low solu-
bility of the silver salts and the adsorption properties of
A photographic additives were discussed by James in 1977
D [2]. In the last decade some reviews were presented con-
1.0] cerning the characteristics of stabilizers and anti-fog-
= ging agents and the existing ideas about the mechanism
[3]. However, in spite of numerous efforts, up to now
there is no uniform theory generally explaining the ef-
fects of the anti-fogging agents. Therefore, all previous
successes in the field of stabilization and the decrease
- of fog were essentially achieved empirically. Thus, no
lg H guantitative relationships could be established between
the structures of triazolo[1,&}pyrimidines and their
sensitometric properties, up to now.
Kleinpeter and co-workers have studied in detail in

0.57

min

Fig. 1 Typical characteristic curve in which the optical den-
sity D of the individual steps of a step—wedge exposure is

represented as a function of the exposurel - t. The min-
imum densityD,,i,, the speedt, ; at 0.1 density units over the past few years th&C NMR spectra;>N NMR spec-

Dy the slopex as well as the maximum densidy,, are tra and quantum-chemical calculations of a large varie-
depicted. ty of substituted 1,2,4-triazolo[1&pyrimidines [4].
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Application of Neural Network values of the NMR chemical shifts. In this way, the re-
_ lationships between tH8C NMR chemical shift infor-

This paper presents results of the use of a backpropaggration and the boiling points of 180andiso-alkanes

tion neural network (NN) for quantitative structure— were simulated with an NN [16].

property relationships of 1,2,4-triazolo[1a¥pyrimidi-

nes. During the past several years there has been a

growth of interest in use of NNs in the field of chemis-Experimental

try [5]. An overview of chemistry related applications

was given by Burns and Whitesides [6]. ApplicationsFourtyfour differently substituted 1,2,4-triazolo[1afpyri-

of NNs exist in almost all fields of analytical chemistry. Midines were tested as stabilizers [17]. Each compound was

They have also been applied to the analysis of spectr&Yenly distributed in a high-speed AgBr emulsion in a con-

scopic data, as well as for mass [7], near-infrared [8]centrat|on of 3—9 mmol per mole silver halide except for the

. 2SH or -SCN containing compounds (0.3—0.9 mmole) and
fluorescence [9] and NMR [10] spectra, to list only a¢, compound 43 (40 r?wmolegj. Then ghe minimum de)nsity

few current examples. _ o Dpin k@nd the sensitivit§g, ; weredetermined as the most
An artificial neural network is a very simplified model jmportant sensitometric parameters. All specifications were
of natural neural systems. Analogous to the neural cellsompared to the photographic layer without any addition of
of a living organism the artificial neurons are computerstabilizer, the so-called 'controD,;, , to compensate for
simulated. One of the unique properties of neural netvariations due to different layer thicknesses and emulsion
works is their ability to learn by observation. An NN processing. The relative fdg,, and the sensitivith E ;
can by adapting itself, learn to recognize features in #ere calculated from these values by the simple equations:
data set by repetitiously examining examples of the same
or similar data. So, an NN based analysis can be real-

'.Zed without the developer haV|1ng aapriori assump- The determinations of sensitometric parameters were ex-
tive knowledge of the problem’s parameters [9]. Theyamined both with an emulsion prepared freshly (marked here
can also serve as a powerful tool to assist in knowledggs 'fr') and after an accelerated artificial aging by storage for
acquisition, helping the chemist to gain insight into poor+ten days at a temperature of 50 °C (marked here as 'ag").

ly understood systems. For this reason NNs are also usedAll 13C NMR chemical shift values used here were taken
for finding relationships between structural information from a study by Kleinpeter, Thomas and Fischer [4a]. Com-
and properties of single compounds or complex sysputations were carried out with personal computers. Mgltiple
tems when the mathematical description of the struclinear regressions and cluster analysis were done using the
ture—property relationships is not known. However, On|ySYSTAT statistic software (STATCON). An internally devel-

. ;.. _~oped computer program was used for the back-propagation
a few applications of the use of NN for the predICtlor;geural network calculations [18]. Here, the number of the in-

I:)reI: Dmink/Dmino and AEO.lk_ EO.:[0

of quantltatl_ve structure—property relationships (QSPR ut units of the hidden layers and of the hidden neurons were
were described up to now. A typical example of QSPRyptimized by several tests. Always one neuron was used as
is the estimation of boiling points from structural pa-output neuron. The input data were separated into sets for
rameters. Balabagt al used multiple linear regression training, monitoring, and testing by random selections. All
(MLR) to set up a correlation between boiling pointsdata were normalized before their input. A sigmoidal func-
and structural parameters of 185 ethers and other cortien was always used as transfer function. Training and mon-
pounds [11]. Lohninger observed a significant decreastoring data sets were run simultaneously. The iterative proc-
of the prediction error by using a radial basis function€SS Was stopped if the deviation for the monitoring data in-
neural network to approximate the correlation of thetresed.

same parameters and properties [12]. Chergaoui and

Villemin also constructed models of relationships be-resylits and Discussion

tween the structures and boiling points of 150 alkanes

by means of multilayer neural networks [13]. Devillers The chemical structures of 44 differently substituted 1,2,4-
and co-workers used a backpropagation neural netwottkiazolo[1,5a]pyrimidines and their experimentally deter-
for estimating the@-octanol/water partition coefficients mined relative fog values are summarized in Table 1. We used
of over 7700 organic molecules from their structurethe numerical values of tHéC NMR chemical shifts to de-
described by means of a modified autocorrelation methscribe the structures of these 1,2,4-triazoloflffyrimidines
od [14]. An overview of the current usage of the NN induantitatively. In sgch a way, the constitutions, the equilibri-
QSPR and quantitative structure-activity relationships'™ Petween possible tautomers, the effects induced by the

R . neighbouring groups and the spatial arrangements of the car-
(QSAR) studies is given also by Devillers [15]. How- bon atoms could be described simultaneously by few numer-

ever, in all cases the molecular structures were reprgs yajues. So, the chemical structure of every compound were
sented by numerical codes, containing information abouéncoded by a set of th&C NMR chemical shifts of the five
topology and connectivities. Another way is the descripcarbon atoms C-2, C-5, C-6, C-7 and C-9 of the basic hetero-
tion of structural information by using the numerical cycle. However, the differences betweeni@NMR chem-
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Table 1 Sensitometric properties of 1,2,4-Triazolo[B]pyrimidines

R7
R 7 N/N
RS K /lk
Dmin_lJDmin_O
Nr. R? RS R6 R’ fr.d ag.h calc.) s.d.9
1 H CH, H OH 0.43 0.31 0.65 0.07
2 CH,OH CH; H OH 0.45 0.29 0.55 0.05
3 (CH,)eCH; CH, H OH 0.55 0.52 0.45 0.08
4 CH,OCH,COOH CH H OH 1.00 0.65 0.55 0.04
5 CH,SH CH; H OH 0.42 0.62 0.58 0.03
6 CHQ—N/‘ Y ei~ CH, H OH 0.78 0.51 0.55 0.04
7 COOH CH, H OH 0.91 0.78 0.64 0.06
8 COOCHCH; CH, H OH 1.00 0.70 0.58 0.07
9 COS(CHy)sCH; CH, H OH 0.67 0.62 0.60 0.09
10 COSNCgH4; CH, H OH 0.67 0.40 0.36 0.04
11 COSCHCOOH CH, H OH 0.15 0.13 0.57 0.01
12 COSPh CH H OH 0.37 0.21 0.52 0.09
13 OH CH; H OH 0.85 0.82 0.74 0.06
14 SH CH; H OH 0.68 0.61 0.71 0.11
15 SCH, CH, H OH 0.71 0.46 0.53 0.05
16 SCH,COOH CH H OH 0.57 0.56 0.51 0.01
17  SCH;CHsN ) CH, H OH 0.59 0.50 0.48 0.02
18 SCH,-Ph CH H OH 0.41 0.33 0.39 0.04
19 -S-S- (disulfide) CH H OH 1.00 0.67 0.71 0.12
20 SOCH; CH, H OH 0.93 0.82 0.71 0.12
21 NHNO, CH, H OH 0.48 0.37 0.71 0.11
22 H CH, (CH,),OH OH 0.42 0.34 0.74 0.04
23 H CH, (CHy),CI OH 0.80 0.71 0.68 0.06
24 H CH, CH,-Ph OH 0.97 0.88 0.86 0.03
25 H CH CH;:N O OH 1.00 0.88 0.50 0.11
5 5 . . . .

26 H CH, Cl OH 1.00 0.58 0.67 0.03
27 H CH, Br OH 0.49 0.32 0.57 0.10
28 H CH, | OH 0.50 0.47 0.46 0.02
29 H CH, NO, OH 1.00 1.00 1.05 0.06
30 SCH; CH, Br OH 0.28 0.42 0.38 0.03
31 SCH, CH, SCN OH 0.89 0.64 0.59 0.17
32 H (CH,),CH; H OH 0.89 0.50 0.54 0.05
33 H (CH,),CH; H OH 0.83 0.44 0.55 0.06
34 H CH,-Ph H OH 0.89 0.48 0.47 0.03
35 H CH,SH H OH 0.42 0.94 0.71 0.04
36 H CH,S(CH,);,CH; H OH 0.48 0.33 0.46 0.04
37 H SCH; H OH 1.00 0.60 0.59 0.04
38 H SO,CH; H OH 1.00 0.65 0.68 0.04
39 COOH (CH),CH,4 H OH 1.00 0.83 0.69 0.10
40 COOCH,CH, (CH,),CH, H OH 074 044 054 0.05
41 SCH, CH,Ph H OH 0.64 0.37 0.51 0.12
42 H H COOCHCH;,  OH 089 126 = —9)
43 H CH, H CH, 0.80 045 051 0.12
4 H CH, H SH 0.53 0.33 0.36 0.05

Rirain 0.257)  0.58f) 0.529)
Reest 0.24Y) 0567 0.799)

a) The 'fresh‘ values were measured immediately after coating the photographic®)ajéie 'aged’ values were measured after an acceler-
ated aging (storage for ten days at 50 °§)The averaged consistent value®gf,, /D, o(after aging) of five calculations with different
data sets and a neural networ. Standard deviations computed over five calculatiof)sCompounds with a relative fog of >1 density
units were not considered heré) Regression coefficient® for the values computed for 33 training compounds and for 10 randomly
selected validating compounds (test) with the multiple linear regres8joAveraged regression coefficients from five different calculations
with neural networks. The results of the randomly selected validating and test data sets were combined here (see also Figure 3)
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ical shifts of the nitrogen—neighbouring carbon atoms C-2, OH

C-5, C-7 and C-9 were small within the respective compounds. Hv/I\

Only the highfield shifted signals of the C-6 carbons distin- =

guishes clearly from the other heterocyclic—carbon atoms. /I\ /J\ >_SCH3 compound
Furthermore, the assignment of any NMR signals to the indi- CHENT N

vidual carbon atoms could not be carried out with certainty.
So in compound3 a neighbouring difference of 17.5 ppm
was measured between the two signals uncertainly assign | " |

for the C-5 or C-7 position [4a]. Therefore, the chemical shifts 2Cg g : — ,

of the five carbons in each triazolopyrimidine were assignet 150 ppm 100

to five input units of the NN in the same increasing order of ER

values which was observed experimentally. This procedure « % 13CNMR
allowed the exclusion of interferences with subjective inter- <
pretation of the experimental data. Unfortunately, the varia- ()
tions of the individuat3C chemical shifts of the carbons be-
tween the different compounds were also negligible [4a]. Here,
standard deviations were found of only 1.5 ppm for the C-9
carbons. They increase to 7.3 ppm for the C-6 carbons. For
this reason, the number of the carbons in all substituents was
applied auxiliary as structure information data.

As expected, with conventional linear methods of data anal-
ysis no significant relations were found between these
13C NMR data and the sensitometric properties of the 1,2,4-
triazolo[1,5a]pyrimidines. That is exemplified by the small . )
regression coefficients which resulted from multiple linear19. 2 Schematic presentation of the method used here for
regressionRvalues in Table 1). By use of a hierarchical clus-the computation of quantitative structure—property-relation-
ter analysis considering all sensitometric and spectroscopieliPS- Here, the chemical structure of compolifds nu-
information which were available the best similarity was ob-Meric coded by*C NMR spectral information. The chemical
served between tH8C NMR chemical shift values and the Shift values of the five carbons in the basic heterocycle (dark-
relative fog in the photographic layer after an accelerated agingfay area) are used as input values in the order of increasing
(Duin «/Dimin 0'ag’). However, the results of the sensitivity chemical shifts. Also the number of all carbons in the substi-
measurementsE, , both in the fresh material and in the aged tUénts (light-gray area) is used as input for the neural net-
one showed no similarity with the NMR data. Therefore, thework..chIes describe the art|f|C|§1I neurons. The tramed net-
following computations were limited to the values of the re|_Work.|s able to compute the sensitometric value which leaves
ative fog in the aged material. the single output neuron.

For the determination of the completely unknown connec-
tions between this sensitometric property andl#eNMR the learning phase the mean deviation between the computed
chemical shifts a multi-layered backpropagation neural netand the correct output values of the training set decreased
work was used. Always six input units were required whereconstantly. The iterative process was stopped when the devi-
as the output layer was formed by a single individual neuroration for the monitoring set increases. Several network archi-
providing the calculated value of the relative fdg, Thisis  tectures with a different number of layers and hidden neurons
schematically shown in Figure 2. Three data sets were formedere tested. The models were trained with a set of 33 ran-
from the available experimental values, a larger one for traindomly selected samples, validated with five selected sam-
ing the neural network and two smaller ones for validatingples, and finally tested with five randomly selected samples
and testing the NN. During training, the inputs are first mul-which the network never ‘saw’ before.
tiplied by random weights, summed and used as input for the Several hundred runs were carried out with different net-
selected transfer function in each hidden neuron. The outputsork architectures. The best results could be achieved by us-
of the hidden neurons are also multiplied by random weighténg a one-hidden-layered neural network whose hidden layer
and summed to provide the output neuron. Finally, the outputonsisted of three neurons. In Fig@athe results of a run
neurons are compared to the known values. The resulting difvith this network construction are shown. The comparison
ferences are used to modify the connection weights by a baclkf calculated and experimentally determined relative fog val-
ward pass during which the weight changes are propagatads are depicted for the training, monitoring and test data sets.
back to the network. So the network produces more and motdere, the training process was stopped after about 200.000
correct outputs. These forward and backward processes aiterations. The quality of the computed results were reflected
continued until the outputs converge on the desired values.by the regression coefficierf&for the comparison of calcu-

If a network is allowed to train too long, it will lose its lated with experimental values. However, with randomly se-
ability to generalize. The NN will start to fit the noise in the lected data sets, slightly different results were always obtained
training set, and the result is a so-called 'overtrained net. Byor the individual compounds during different runs. So, in
using the trained net to predict the output of a second moniigure3b as also in Table 1 the calculated relative fog values
toring data set simultaneously, it is possible to determine thaveraged over five different runs are shown. In addition to
optimum number of iterations for the training set [8]. During the comparison between averaged computed and experimen-

eural network

\J . .
0.51 sensitometric value
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Fig. 3 Correlation between computed and experimentally determined values for the relatvg,fodld,,;, o of 43 different-

ly substituted 1,2,4-triazolo[1 &pyrimidines. In Figureathe results of a single run with a trained neural network are shown.

The data were randomly separated into sets for training (33 compounds), monitoring, and testing (5 compounds always). The
regression coefficients and the standard deviations (values in parenthestg), &6.458 (0.183)R,,, = 0.360 (0.13) and

Rest = 0.927 (0.1). The regression coefficient for the training data corrects clearly itself if values only larger than 0.4 were

consideredR,,, = 0.870 (0.1)). In Figur8b the averaged results

from five different runs with randomly selected data sets

always are shown in the same manner. Here the regression coefficieRigae0.518 (0.172) anR,, = 0.788 (0.12) and

after disregard of the small relative fog valRgs,, = 0.868 (0.1).

tal values, also the standard deviations from the five calculashown that a neural network is able to register the complex
tions are represented in Table 1. It is clearly shown, that thesgnnections between structure-relevant NMR data and mate-
values are independent of the calculated relative fog valuesial qualities. Unfortunately, the networks offer only small
The stabilizing action and the underlying physicochemicalpossibilities for interpretation of the discovered structure—
effects of triazolopyrimidines are influenced by their elec- property relationships. However, the similarity between com-
tronic structures which also express themselves in the NMRuted and experimental relative fog values shows it
spectra. Therefore different substituents influence both phoNMR chemical shifts are basically suitable for a simple nu-
tographic activities and NMR chemical shift values. This be-meric coding of chemical structures and also quantitative
comes clear with the correlation achieved between the constructure descriptions.

puted and the experimental values, represented in F3gure
However, it is shown also that for the compounds with a good

stabilizing effect the calculated results strongly differ from One of the authors (G. F.) thanks Chem. Ing. Sigrid Wischek
experimental values. That becomes clear on the left side dbr performing the photographic tests.

the dashed line in the Figusb. On the other hand, the stand-
ard deviations are nearly of the same size across the entire

range of values (Table 1). This is an indication of a mechaReferences

nism which is not covered by th8C NMR chemical shifts
used here for the numeric coding of the chemical structuresy]
This becomes especially clear on closer inspection of the re-
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